THE BAIRE CLASSES

CHRISTIAN ROSENDAL

Proposition 1. Let X be metrisable and $1 \le \xi < \zeta$. Then $\Sigma_{\xi}^0 \cup \Pi_{\xi}^0 \subseteq \Delta_{\zeta}^0$. It follows that we have the following diagram where every class is contained in all the classes to the right of it.

Proof. Note that, as $\Delta_{\zeta}^0 = \Sigma_{\zeta}^0 \cap \Pi_{\zeta}^0$ is closed under complementation, it suffices to prove that $\Sigma_{\xi}^0 \subseteq \Delta_{\zeta}^0 = \Sigma_{\zeta}^0 \cap \Pi_{\zeta}^0$. Also, as $\Sigma_{\xi}^0 \subseteq \{\bigcup_{n \in \mathbb{N}} A_n \mid A_n \in \bigcup_{\eta < \zeta} \Sigma_{\eta}^0\} = \Pi_{\zeta}^0$, we need only verify that $\Sigma_{\xi}^0 \subseteq \Sigma_{\zeta}^0$.

Suppose first that $A \in \Sigma_{\xi}^{0}$ and $\xi \geqslant 2$. Then we can write $A = \bigcup_{n \in \mathbb{N}} A_n$ for some $A_n \in \bigcup_{\eta < \xi} \Pi_{\eta}^{0} \subseteq \bigcup_{\eta < \zeta} \Pi_{\eta}^{0}$, showing that also $A \in \Sigma_{\zeta}^{0}$.

If instead $A \in \Sigma_{\xi}^{0}$ for $\xi = 1$, then A is open and thus also F_{σ} , i.e., $A \in \Sigma_{2}^{0} \subseteq \Sigma_{\zeta}^{0}$. So

If instead
$$A \in \Sigma_{\xi}^0$$
 for $\xi = 1$, then A is open and thus also F_{σ} , i.e., $A \in \Sigma_2^0 \subseteq \Sigma_{\zeta}^0$. So $\Sigma_{\xi}^0 \subseteq \Sigma_{\zeta}^0$.

Since thus the classes Σ^0_{ξ} , Π^0_{ξ} and Δ^0_{ξ} are increasing with ξ and the supremum of a countable sequence of countable ordinals is $< \omega_1$, one easily checks that their unions over $\xi < \omega_1$ are σ -algebras, from which we get the following result.

Corollary 2.
$$\mathscr{B}(X) = \bigcup_{\xi < \omega_1} \Sigma_{\xi}^0 = \bigcup_{\xi < \omega_1} \Pi_{\xi}^0 = \bigcup_{\xi < \omega_1} \Delta_{\xi}^0$$
.